Calculus 140, section 4.5 First and Second Derivative Tests

notes by Tim Pilachowski
Reminder: You will not be able to use a graphing calculator on tests!
Example A: Find all relative extreme values of $f(x)=x^{3}-3 x^{2}-9 x+1$.
first derivative:
critical numbers:

Using the factors of f^{\prime} we can investigate the intervals on either side of and in between these two critical values interval(s) to determine where $f^{\prime}(x)>0$ and where $f^{\prime}(x)<0$.
relative maximum value(s):
relative minimum value(s):

The text defines "relative maximum value", "relative minimum value" and "relative extreme value" on an open interval in Definition 4.9.

Theorem 4.10 [The First Derivative Test]: "Let f be differentiable on an open interval about the number c except possibly at c, where f is continuous.
a. If f^{\prime} changes from positive to negative at c, then f has a relative maximum value at c.
b. If f^{\prime} changes from negative to positive at c, then f has a relative minimum value at c."

The book's proof takes five lines of text.
Example B (see section 4.1 Example C): Consider the function $f(x)=\frac{x^{3}}{e^{x}}$.
first derivative:
critical numbers:

Example C: Given $f(x)=\cos x+\frac{\sqrt{2}}{2} x$, determine values c where $f^{\prime}(x)$ changes from negative to positive, or from positive to negative.
first derivative:
critical numbers:

Example D: Consider the function $f(x)=\frac{3 x+1}{x-2}$. first derivative:
critical numbers:

Theorem 4.11 [The Second Derivative Test]: "Assume that $f^{\prime}(c)=0$ and that $f^{\prime \prime}(c)$ exists.
a. If $f^{\prime \prime}(c)<0$, then $f(c)$ is a relative maximum value of f.
b. If $f^{\prime \prime}(c)>0$, then $f(c)$ is a relative minimum value of f.

If $f^{\prime \prime}(c)=0$, then from this test alone we cannot draw any conclusions about a relative extreme value of f at c."
Take a look at the text's proof, especially the examples for which both $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, but f has neither a maximum nor a minimum.

Example E: Consider the function $f(x)=2 x+\frac{2}{x}-1=2 x+2 x^{-1}-1$. Use the Second Derivative Test to determine any relative extreme values. first derivative:
critical numbers:

second derivative:
second derivative test:
relative maximum value(s):
relative minimum value(s):

Example F: Given $f(x)=\frac{10 \ln x}{x}$, determine any relative extreme values. first derivative:
critical numbers:
$\sqrt{4}$

Example G: Without knowing the function itself, describe the behavior of its graph only using information provided by its first derivative. The graph to the left is a graph of $f^{\prime}(x)$.
critical numbers:

Interval	$x<-4$	$x=-4$	$-4<x<-2$
value of f^{\prime}			

Since the first derivative (slope of f)...

Interval	$-4<x<-2$	$x=-2$	$-2<x<3$
value of f^{\prime}			

Since the first derivative (slope of f) ...

interval	$-2<x<3$	$x=3$	$3<x$
value of f^{\prime}			

Since the first derivative (slope of f) ...
interval(s) increasing:
interval(s) decreasing:

Putting all of the information above together, we can draw a preliminary sketch of the graph for f.

